Development of a high-throughput data analysis method for quantitative real-time PCR (qPCR)

Over the last 20 years, quantitative real-time PCR (qPCR) has become an essential technique in molecular biology for detecting and quantifying nucleic acids. Workflow simplicity and advances in instrumentation now permit sizeable quantities of data to be generated rapidly, with 96, 384, or even 1536 reactions in one qPCR experiment. The challenge lies in the details: qPCR experiments require thoughtful design and analysis to capture all relevant information, such that accurate and appropriate conclusions can be drawn.

Development of NEB’s Luna® qPCR product line required repeated data collection on a series of test panels, each containing multiple targets. It became clear during early development that a more scalable approach to data analysis and visualization was required to better understand how changes in reagent composition impacted performance. In order to compare various amplicon panels over multiple qPCR runs, instruments, reagents and conditions, a high-throughput data analysis method termed “dots in boxes” was developed. The output of this analysis captures key assay characteristics, highlighted in MIQE guidelines, as a single data point for each qPCR target. This method of analysis permits multiple targets and conditions to be compared in one graph, allowing concise visualization and rapid evaluation of overall experimental success.

INTRODUCTION TO qPCR

qPCR is a powerful fluorescence-based technique that detects and quantifies nucleic acids in a variety of samples. In 1992, Higuchi et al. showcased the first example of real-time PCR by using a camera during the amplification reaction to continuously monitor the incorporation of ethidium bromide, an intercalating dye that fluoresces in the presence of double-stranded DNA under ultra-violet light (1). Currently, most qPCR experiments commonly employ the dsDNA intercalating dye SYBR® Green I or hydrolysis probes (e.g., TaqMan®) to monitor amplification (2). Plotting the measured fluorescence signal versus PCR cycle number results in a graphical representation of amplification. The point at which the fluorescence signal exceeds the background fluorescence level is known as the quantification cycle (Cq). Comparing Cq values permits evaluation of relative target abundance between two or more samples. Alternatively, Cq values can be used to calculate absolute target quantities via reference to an appropriate standard curve, derived from a series of known DNA or RNA dilutions. This technique can be more powerful than traditional PCR, allowing both qualitative information (presence or absence of a target sequence), as well as the quantitative data (nucleic acid quantity) to be determined without opening the reaction tube. Greater sensitivity and lower risk of carryover contamination has resulted in qPCR replacing end-point PCR in many applications. Today, the technique is used in a variety of fields, from molecular diagnostics to agricultural research, and in applications including mutation detection, genotyping, copy number variation and gene expression analysis.

MIQE GUIDELINES

Rapid adoption of qPCR and its relatively straightforward execution (mixing amplification reagents, primers and template) has led to the generation of an enormous amount of data, as evidenced by the numerous publications containing qPCR experiments. However, the ease of generating qPCR data has also proven to be the technique’s greatest challenge (3). A diverse set of protocols, instruments, reagents and analysis methods can be found in the scientific literature, with many publications reporting invalid or conflicting data sets. The lack of consensus on best experimental practices for qPCR resulted in the establishment of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines by Bustin et al. (4).

The MIQE guidelines established a set of qPCR performance metrics that should be determined and reported in peer-reviewed publications to ensure robust assay performance and reproducibility. These assay characteristics include:

• PCR efficiency
• Linear dynamic range
• Limit of detection (LOD)
• Target specificity
• Precision

One of the most important assay characteristics is PCR efficiency, which is a measure of product duplication at every amplification cycle. PCR efficiency is measured by amplifying multiple known concentrations of nucleic acid to obtain Cq values for each concentration. A standard curve is created by plotting the observed Cq values on the y-axis and the log10 of the template concentration on the x-axis. Efficiency is calculated using the equation:

\[
\text{PCR efficiency} = 10^{\frac{1}{\text{slope}} - 1}
\]

A slope of -3.32 represents 100% PCR efficiency and indicates doubling of the target amplicon at each PCR cycle.

The linear dynamic range establishes the upper and lower limits for quantification and should be linear for at least three log10 concentrations of template. Preferably, the dynamic range encompasses five to six orders of magnitude. Linearity over a dynamic range is reported by the R2 coefficient of determination for the Cq values linear fit to the standard curve.

The limit of detection is often defined as the lowest concentration at which 95% of target sequences are detected in positive samples. An ideal Poisson distribution and single copy detection dictate the lowest theoretical LOD is 3 molecules per PCR. Its determination establishes the lower boundary for target detection with 95% confidence (5).

Target specificity should be confirmed by product size, sequencing or melt curve analysis, since primers may unexpectedly amplify off-target regions. In addition, some primer sets have a propensity to form primer dimers during amplification, resulting in inaccurate quantification or false positive results. In order to identify spurious amplification products, no-template controls (NTC) should be included in every qPCR run. As NTCs can identify both unintended amplification products as well as contamination, criteria should be established for using these controls to determine when data should be accepted or rejected.

The last factor that should be evaluated is assay precision. Multiple replicates of the same sample should typically have high concordance. Variation inherently increases as the copy number decreases, but also can be attributed to factors such as pipetting errors and instrumentation.
DOTS IN BOXES ANALYSIS OF qPCR DATA

The MIQE-highlighted described above served as a guide for evaluating reagent performance during development of NEB’s new Luna qPCR and RT-qPCR product line. To ensure strong performance across a range of amplicons, multiple test panels were created, with each panel containing a minimum of five targets that could be run in 96 or 384-well formats. Panels comprised of gDNA and cDNA targets were used to evaluate DNA-based qPCR master mixes, whereas RNA targets of varying abundance were used to assess RT-qPCR reagents. In general, targets spanned typical qPCR amplicon lengths (~70 to 200 bp), as well as GC content (~40 to 60%). Given the large data set that was created during development, data mining to decipher what changes impacted performance became challenging, and it was clear that a better, more scalable approach to data visualization was needed.

The fundamental performance criteria outlined in the MIQE publication therefore served as a basis for the development of a high-throughput data analysis method termed “dots in boxes” (Figure 1). For each amplicon, PCR efficiency, linear dynamic range, target specificity and precision was captured as a single data point plotted in two dimensions, with the PCR efficiency plotted on the y-axis and the delta Cq (ΔCq) as the x-axis. ΔCq is the difference between the Cq values of the lowest template dilution and the NTC. Setting guidelines around the typical accepted values for these two plotted parameters (PCR efficiency of 90 to 110% and ΔCq of 3 or greater) created a graphical box, highlighting where successful qPCR experiments (dots) should fall.

FIGURE 1: Breaking it down: how we translate qPCR data into “dots in boxes”

NEB has developed a method to better evaluate the large amount of qPCR data generated in an experiment. The output of this analysis is known as a dot plot, and captures the key features of a successful, high-quality qPCR experiment as a single point. This method of analysis allows many targets and conditions to be compared in a single graph. For each experiment, triplicate reactions are set up across a five-log range of input template concentrations (Amplification plot, bottom-left). Three non-template control (NTC) reactions are also included, for a total of 18 reactions per condition/target. Efficiency (%) is calculated (Standard curve, top-left) and is plotted against ΔCq template concentrations (Amplification plot, bottom-left). As a dot plot, center), which is the difference between the Cq values of the lowest template dilution and the NTC. Setting guidelines around the typical accepted values for these two plotted parameters (PCR efficiency of 90 to 110% and ΔCq of 3 or greater) created a graphical box, highlighting where successful qPCR experiments (dots) should fall.

Once assigned, the quality score for each amplicon was represented by the dot size and opacity. The higher the quality score, the larger the dot. Additionally, quality scores of 4 and 5 were represented as solid dots while a score of 3 or less was captured as an open circle for simple visual screening of performance. Amplicons falling in the box and receiving a quality score of 4 or 5 represented high quality, reliable qPCR data. The dots in boxes method allowed multiple targets and conditions to be plotted on a single graph and compared quickly, creating an efficient, high-throughput visual method for data analysis.

To rigorously test qPCR performance, experiments were designed to simultaneously evaluate efficiency over a broad dynamic range of input concentrations; sensitivity by assessing low-input detection; and specificity by assessing off-target amplification. To accomplish this, qPCR efficiency was measured over a five-log dilution of template with data collected in triplicate for each dilution and a NTC. For genomic targets, an average of ~2 copies per
reaction was routinely tested to assess the limits of low input detection. Since the ΔCq incorporates both the Cq of the lowest input and that of the NTC (ΔCq = Cq(lntc) − Cq(lowest input), it allows sensitivity and specificity to be captured in a single variable. Inability to amplify the lowest template dilution results in a ΔCq of 0 in most cases, since curves failing to cross the threshold are automatically given a Cq value corresponding to the total number of amplification cycles. The presence of non-specific or contaminating amplification in NTC reactions also reduces the ΔCq, such that either lack of low-input amplification or excessive off-target amplification can push the ΔCq below the passing (≥ 3) threshold. Target specificity was also evaluated using denaturation or melt curves for all intercalating dye-based qPCR assays, although this information was not captured in the dot plot.

Pairing dots in boxes with an existing custom laboratory information management system (LIMS) permitted the performance of reagents to be screened and tracked on all amplicon panels. The LIMS, previously established for the development of NEB’s Q5 High-Fidelity DNA Polymerase products, was modified to capture all relevant experimental details. The database connected results from each qPCR experiment (e.g., Cq values, PCR efficiency, and linearity) to the contents of each well in that experiment (e.g., target, template concentration, primer concentration, qPCR master mix, additives, etc.) such that performance could be linked to reaction variables and conditions. Additional details including the operator, real-time PCR instrument ID, and cycling conditions were also recorded. Tableau®, an analytics software package, was used to analyze the data and to create graphical displays of the dot plots. An example outcome is shown in Figure 2A. Here, the impact of known PCR additives and the concentration ranges that were beneficial to performance were quickly assessed on a development lot of the DNA dye-based master mix. Additive D resulted in the best performance on this particular panel of five amplicons. Unfortunately, improved performance on one particular qPCR panel did not necessary translate to positive performance across all panels evaluated. Thus, the development process was by necessity methodical and iterative. This made the ability to analyze and visualize large sets of results, covering multiple test panels, formulations and experimental conditions, all the more crucial. Dots in boxes thus played a critical role in the development of NEB’s Luna products, driving reagent optimization by quickly identifying compositions with increased performance across all test panels. Successful compositions were built upon and fine-tuned, progressively improving the percentage of amplicons that fell in the box with high quality scores (Figure 2B), and thus overall performance. As a result, the final Luna qPCR formulations exhibit robust performance on diverse targets from a wide range sample types and sources.

Dots in boxes also permitted large-scale performance comparisons between the Luna Universal qPCR and RT-qPCR reagents to various other commercial product offerings. Each commercial mix was challenged against test panels containing a range of targets. Amplicon panels used during the development were tested with a variety of commercial mixes and commercial primer/probe sets. Data was collected by two separate users and experiments were performed according to each manufacturer’s specific product recommendations. The results for the Luna Universal qPCR Master Mix (NEB #M3003) are shown in Figure 3. Luna generates the highest quality qPCR data of all reagents tested, with 86% of all amplicons tested falling in the box with high quality scores. Strong performance was observed for the entire Luna portfolio; dots in boxes performance comparisons for each Luna product can be found at www.lunaqpcr.eu.
Luna qPCR products outperform other commercially-available reagents

qPCR reagents from NEB and other manufacturers were tested across 16–18 qPCR targets varying in length and GC content, using either Jurkat genomic DNA or Jurkat-derived cDNA as input (10 genomic DNA targets and 8 cDNA targets on Bio-Rad real-time instrument, 9 genomic and 7 cDNA targets on ABI instrument). For each testing condition, data was collected by 2 users and according to manufacturers’ specifications. Reproducible results were evaluated as described in Figure 2. Representative curves are shown for two targets, ACTG1 (top) and TP53 (bottom), to demonstrate the correlation of dots in boxes with typical qPCR data. Results for NEB and other major manufacturers are shown: Bio-Rad, GoTaq® qPCR Master Mix. Luna Universal qPCR Master Mix from NEB outperformed all other reagents tested.

CONCLUSION

Dots in boxes is a powerful, high-throughput data analysis method based on the MIQE guidelines that enables rapid, concise comparison of qPCR performance across many targets and for multiple reagents, conditions and/or protocols, permitting an overview of qPCR performance over thousands of reactions where such visualization was not previously possible. Combining the dots in boxes analysis method, a range of target test panels, and a custom LIMS enabled us to create and mine large data sets for information, identify critical variables that affect amplification in qPCR, and harness this information to optimize qPCR reagents. The dots in boxes analysis tool was thus invaluable in development of the Luna qPCR and RT-qPCR reagents, and will continue to benefit future qPCR evaluation and development efforts.

References

BIO-RAD® is a registered trademark of Bio-Rad Laboratories, Inc.
SYBR® is a registered trademark of Molecular Probes, Inc.
QIAGEN® and QUANTITECT® are registered trademarks of Qiagen, Inc.
GOTaq® and PRIMEGEN® are registered trademarks of Promega Corporation
TABLEAU® is a registered trademark of Tableau Software
FASTSTART™ is a trademark of Roche
POWERUP™ is a trademark of Thermo Fisher Scientific
SSOADVANCED™ is a trademark of Bio-Rad Laboratories

http://international.neb.com

New England Biolabs, Inc., 240 County Road, Ipswich, MA, USA
Contact your official local NEB distributor for further details. http://international.neb.com/support/ or distributors.de@neb.com